.. _ndm-label: **We have** seen that the :ref:`fields ` and :ref:`filter ` parameters are relevant for both :ref:`Interrogation ` and :ref:`Programming. ` Here is presented the list of all available entities with which to construct these parameters: 1. Legend --------- | *(S)* String. When used in a filter, must be enclosed in single quotes. | |space| example :code:`GAMMA.MULTIPOLARITY = 'M1'` | *(Q)* Quantity. It has also the "_UNC" and "_LIMIT" fields | *(q)* Quantity with only the "_UNC" field | *(L)* Link to another entity. One must specify which field of the linked entity is to be referred: | |space| example :code:`GAMMA.NUC.Z` .. |space| unicode:: U+0020 .. space .. |nbspc| unicode:: U+00A0 .. non-breaking space 2. Entities ----------- NUCLIDE ~~~~~~~ | properties of the nuclide .. warning:: The ground state (Half-life, Jp, etc...) is to be found in the LEVEL, with SEQNO = 0 | **ABUNDANCE** |nbspc| |nbspc| *(q)* natural abundance, in mole fraction | **ATOMIC_MASS** |nbspc| |nbspc| *(Q)* atomic mass, in micro AMU | **BETA_DECAY_EN** |nbspc| |nbspc| *(Q)* energy available for beta decay [keV] | **BINDING_EN** |nbspc| |nbspc| *(Q)* binding energy per nucleon [keV] | **CHARGE_RADIUS** |nbspc| |nbspc| *(Q)* Root-mean-square of the nuclear charge radius, expressed in fm. | **ELEM_SYMBOL** |nbspc| |nbspc| *(S)* symbol of the element | **MASS_EXCESS** |nbspc| |nbspc| *(Q)* mass excess [keV] | **N** |nbspc| |nbspc| number of neutrons | **NUC_ID** |nbspc| |nbspc| *(S)* identifier, e.g. 135XE | **QA** |nbspc| |nbspc| *(Q)* alpha decay Q energy [keV] | **QBMN** |nbspc| |nbspc| *(Q)* beta- + n decay energy [keV] | **QEC** |nbspc| |nbspc| *(Q)* electron capture Q-value [keV] | **RESON_INT** |nbspc| |nbspc| *(q)* resonance integral [b] | **S2N** |nbspc| |nbspc| *(Q)* 2-neutron separation energy [keV] | **S2P** |nbspc| |nbspc| *(Q)* 2-proton separation energy [keV] | **SN** |nbspc| |nbspc| *(Q)* neutron separation energy [keV] | **SP** |nbspc| |nbspc| *(Q)* proton separation energy [keV] | **THER_N_CAPTURE** |nbspc| |nbspc| *(q)* thermal neutron capture [b] | **WESTCOTT_G** |nbspc| |nbspc| Westcott g-factor | **Z** |nbspc| |nbspc| number of protons LEVEL ~~~~~ | properties of the energy states of a nuclide | **CONFIGURATION** |nbspc| |nbspc| *(S)* the nuclear configuration | **DIPOLE_MM** |nbspc| |nbspc| *(Q)* magnetic dipole moment [Bohr magnetons] | **ENERGY** |nbspc| |nbspc| *(Q)* level energy [keV] | **HALF_LIFE** |nbspc| |nbspc| *(Q)* Half-life value as given in the evaluation, see HALF_LIFE_UNITS for the units. Use HALF_LIFE_SEC for calculations | **HALF_LIFE_LIMIT** |nbspc| |nbspc| (S) - > , <, >=, etc.. | **HALF_LIFE_SEC** |nbspc| |nbspc| *(Q)* Half-life in [s] | **HALF_LIFE_UNITS** |nbspc| |nbspc| *(S)* - the Half-life field units | **ISOSPIN** |nbspc| |nbspc| *(S)* Isospin | **J** |nbspc| |nbspc| J value as assigned in RIPL | **JP** |nbspc| |nbspc| *(S)* Jp as given in the evaluation | **JP_REASON** |nbspc| |nbspc| reason for assigning the Jp: JP_WEAK for weak arguments; JP_STRONG for strong | **JP_METHOD** |nbspc| |nbspc| method for assigning the Jp in RIPL, see these :ref:`codes ` | **JP_ORDER** |nbspc| |nbspc| order of the Jp: 1 is the first occurence | **NUC** |nbspc| |nbspc| *(L)* access to the properties of the nuclide , e.g. LEVEL.NUC.Z | **P** |nbspc| |nbspc| parity as assigned in RIPL | **QUADRUPOLE_EM** |nbspc| |nbspc| *(Q)* Electrinc quadrupole moment [b] | **QUESTIONABLE** |nbspc| |nbspc| *(S)* the existence of the level is questionable | **SEQNO** |nbspc| |nbspc| sequential number of the level, G.S. = 0 GAMMA ~~~~~~~ | properties of a nuclide electromagnetic transition | **BEW** |nbspc| |nbspc| *(Q)* reduced electric transition probabilities in Weisskopf units | **BEW_ORDER** |nbspc| |nbspc| order of the transition | **BMW** |nbspc| |nbspc| *(Q)* reduced magnetic transition probabilities in Weisskopf units | **BMW_ORDER** |nbspc| |nbspc| order of the transition | **END_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the end level, e.g. GAMMA.END_LEVEL.ENERGY | **ENERGY** |nbspc| |nbspc| *(Q)* energy [keV] | **MIXING_RATIO** |nbspc| |nbspc| *(Q)* mixing ratio | **MULTIPOLARITY** |nbspc| |nbspc| *(S)* - multipolarity | **NUC** |nbspc| |nbspc| *(L)* - access to the properties of the nuclide, e.g. GAMMA.NUC.Z | **QUESTIONABLE** |nbspc| |nbspc| *(S)* the existence is questionable | **REL_PHOTON_INTENS** |nbspc| |nbspc| *(Q)* relative photon intensity [%]. The sum over the same start level is 100 | **SEQNO** |nbspc| |nbspc| sequential number of the gamma with respect to the start level, 0 being the gamma with the lowest energy | **START_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the start level, e.g. GAMMA.START_LEVEL.ENERGY | **TOT_CONV_COEFF** |nbspc| |nbspc| *(Q)* total conversion coefficient L_DECAY ~~~~~~~~ | properties of a decay mode of a level | **DAUGHTER** |nbspc| |nbspc| *(L)* access to daughter nuclide properties , e.g. L_DECAY.DAUGHTER.Z | **LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the level, e.g. L_DECAY.LEVEL.ENERGY | **MODE** |nbspc| |nbspc| code of the decay, specify it using one of the DECAY_* constants | **NUC** |nbspc| |nbspc| *(L)* access to parent nuclide properties , e.g. L_DECAY.NUC.Z | **PERC** |nbspc| |nbspc| *(Q)* decay probability per 100 decays of the parent | **Q_TOGS** |nbspc| |nbspc| *(q)* Q-value of the decay. For decay of isomeric sates, it includes the parent energy level DR_ALPHA ~~~~~~~~~~~ | alpha decay radiation | **DAUGHTER** |nbspc| |nbspc| *(L)* access to the properties of the daughter nuclide, e.g. DR_*.DAUGHTER.ENERGY | **DAUGHTER_FED_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the level in which the daughter nuclide is created , e.g. DR_*.DAUGHTER_FED_LEVEL.ENERGY | **ENERGY** |nbspc| |nbspc| *(Q)* energy of the radiation [keV] | **HINDRANCE** |nbspc| |nbspc| *(Q)* hindrance factor | **INTENSITY_** |nbspc| |nbspc| *(Q)* absolute intensity of the radiation per 100 decays of the parent | **MODE** |nbspc| |nbspc| code of the decay, specify it using one of the DECAY_* constants | **PARENT** |nbspc| |nbspc| *(L)* access to the properties of the parent nuclide, e.g. DR_*.PARENT.Z | **PARENT_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the parent level, e.g. DR_*.PARENT_LEVEL.ENERGY DR_BETAM ~~~~~~~~~ | beta- decay radiation | **DAUGHTER** |nbspc| |nbspc| *(L)* access to the properties of the daughter nuclide, e.g. DR_*.DAUGHTER.ENERGY | **DAUGHTER_FED_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the level in which the daughter nuclide is created , e.g. DR_*.DAUGHTER_FED_LEVEL.ENERGY | **ENDPOINT** |nbspc| |nbspc| *(Q)* end-point energy [keV] | **ENERGY** |nbspc| |nbspc| *(Q)* energy of the radiation [keV] | **INTENSITY_** |nbspc| |nbspc| *(Q)* absolute intensity of the radiation per 100 decays of the parent | **LOGFT** |nbspc| |nbspc| *(Q)* log ft | **MODE** |nbspc| |nbspc| code of the decay, specify it using one of the DECAY_* constants | **PARENT** |nbspc| |nbspc| *(L)* access to the properties of the parent nuclide, e.g. DR_*.PARENT.Z | **PARENT_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the parent level, e.g. DR_*.PARENT_LEVEL.ENERGY | **TRANS_TYPE** |nbspc| |nbspc| *(S)* transition type DR_BETAP ~~~~~~~~~~~ | beta+ decay radiation | **BPEC_INTENSITY** |nbspc| |nbspc| *(Q)* sum of electron capture and beta+ intensites per 100 decays of the parent | **DAUGHTER** |nbspc| |nbspc| *(L)* access to the properties of the daughter nuclide, e.g. DR_*.DAUGHTER.ENERGY | **DAUGHTER_FED_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the level in which the daughter nuclide is created , e.g. DR_*.DAUGHTER_FED_LEVEL.ENERGY | **EC_ENERGY** |nbspc| |nbspc| *(Q)* energy available for electron capture | **EC_INTENSITY** |nbspc| |nbspc| *(Q)* electron capture intensity per 100 decays of the parent | **ENDPOINT** |nbspc| |nbspc| *(Q)* end-point energy [keV] | **ENERGY** |nbspc| |nbspc| *(Q)* energy of the radiation [keV] | **INTENSITY_** |nbspc| |nbspc| *(Q)* absolute intensity of the radiation per 100 decays of the parent | **LOGFT** |nbspc| |nbspc| *(Q)* log ft | **MODE** |nbspc| |nbspc| code of the decay, specify it using one of the DECAY_* constants | **PARENT** |nbspc| |nbspc| *(L)* access to the properties of the parent nuclide, e.g. DR_*.PARENT.Z | **PARENT_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the parent level, e.g. DR_*.PARENT_LEVEL.ENERGY | **TRANS_TYPE** |nbspc| |nbspc| *(S)* transition type DR_ANTI_NU ~~~~~~~~~~~ | anti neutrino decay radiation | **DAUGHTER** |nbspc| |nbspc| *(L)* access to the properties of the daughter nuclide, e.g. DR_*.DAUGHTER.ENERGY | **DAUGHTER_FED_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the level in which the daughter nuclide is created , e.g. DR_*.DAUGHTER_FED_LEVEL.ENERGY | **ENERGY** |nbspc| |nbspc| *(Q)* energy [keV] | **INTENSITY_** |nbspc| |nbspc| *(Q)* absolute intensity of the radiation per 100 decays of the parent | **MODE** |nbspc| |nbspc| code of the decay, specify it using one of the DECAY_* constants | **PARENT** |nbspc| |nbspc| *(L)* access to the properties of the parent nuclide, e.g. DR_*.PARENT.Z | **PARENT_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the parent level, e.g. DR_*.PARENT_LEVEL.ENERGY DR_NU ~~~~~~~~~~~ | neutrino decay radiation | **DAUGHTER** |nbspc| |nbspc| *(L)* access to the properties of the daughter nuclide, e.g. DR_*.DAUGHTER.ENERGY | **DAUGHTER_FED_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the level in which the daughter nuclide is created , e.g. DR_*.DAUGHTER_FED_LEVEL.ENERGY | **ENERGY_** |nbspc| |nbspc| *(Q)* average energy [keV] when emitted via b+ | **INTENSITY_** |nbspc| |nbspc| *(Q)* absolute intensity of the radiation per 100 decays of the parent when emitted via b+ | **ENERGY_EC_** |nbspc| |nbspc| *(Q)* average energy [keV] when emitted via electron capture | **INTENSITY_EC_** |nbspc| |nbspc| *(Q)* absolute intensity of the radiation per 100 decays of the parent when emitted via electron capture | **MODE** |nbspc| |nbspc| code of the decay, specify it using one of the DECAY_* constants | **PARENT** |nbspc| |nbspc| *(L)* access to the properties of the parent nuclide, e.g. DR_*.PARENT.Z | **PARENT_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the parent level, e.g. DR_*.PARENT_LEVEL.ENERGY DR_DELAYED ~~~~~~~~~~~ | delayed particle emission | **DAUGHTER** |nbspc| |nbspc| *(L)* access to the properties of the daughter nuclide, e.g. DR_*.DAUGHTER.ENERGY | **DAUGHTER_FED_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the level in which the daughter nuclide is created , e.g. DR_*.DAUGHTER_FED_LEVEL.ENERGY | **ENERGY** |nbspc| |nbspc| *(Q)* energy of the radiation [keV] | **ENERGY_X** |nbspc| |nbspc| *(Q)* energy of the intermediate state after beta decay and before emetting the particle [keV] | **INTENSITY_** |nbspc| |nbspc| *(Q)* absolute intensity of the radiation per 100 decays of the parent | **MODE** |nbspc| |nbspc| code of the decay, specify it using one of the DECAY_* constants | **PARENT** |nbspc| |nbspc| *(L)* access to the properties of the parent nuclide, e.g. DR_*.PARENT.Z | **PARENT_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the parent level, e.g. DR_*.PARENT_LEVEL.ENERGY | **TYPE** |nbspc| |nbspc| *(S)* delayed particle: DN, DP, or DA DR_GAMMA ~~~~~~~~~~~ | gamma decay radiation | **BEW** |nbspc| |nbspc| *(Q)* reduced electric transition probabilities in Weisskopf units | **BEW_ORDER** |nbspc| |nbspc| order of the transition | **BMW** |nbspc| |nbspc| *(Q)* reduced magnetic transition probabilities in Weisskopf units | **BMW_ORDER** |nbspc| |nbspc| order of the transition | **END_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the end level, e.g. GAMMA.END_LEVEL.ENERGY | **ENERGY** |nbspc| |nbspc| *(Q)* energy [keV] | **INTENSITY** |nbspc| |nbspc| *(Q)* intensity per 100 dcay of the parent | **MIXING_RATIO** |nbspc| |nbspc| *(Q)* mixing ratio | **MODE** |nbspc| |nbspc| code of the decay, specify it using one of the DECAY_* constants | **MULTIPOLARITY** |nbspc| |nbspc| String - multipolarity | **PARENT** |nbspc| |nbspc| *(L)* access to the properties of the parent nuclide, e.g. DR_GAMMA.PARENT.Z | **PARENT_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the parent level, e.g. DR_GAMMA.PARENT_LEVEL.ENERGY | **QUESTIONABLE** |nbspc| |nbspc| *(S)* the existence is questionable | **REL_PHOTON_INTENS** |nbspc| |nbspc| *(Q)* relative photon intensity [%] | **SEQNO** |nbspc| |nbspc| sequential number of the gamma with respect to the start level, 0 being the gamma with the lowest energy | **START_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the start level, e.g. GAMMA.START_LEVEL.ENERGY | **TOT_CONV_COEFF** |nbspc| |nbspc| *(Q)* total conversion coefficient DR_PHOTON_TOTAL ~~~~~~~~~~~~~~~ | photon decay radiation (regardless whether gamma or X) | **COUNT** |nbspc| |nbspc| number of parent decay mode is which the line is present | **ENERGY** |nbspc| |nbspc| *(q)* energy [keV] | **INTENSITY** |nbspc| |nbspc| *(q)* intensity per 100 dcay of the parent | **PARENT** |nbspc| |nbspc| *(L)* access to the properties of the parent nuclide, e.g. DR_*.PARENT.Z | **TYPE** |nbspc| |nbspc| *(S)* whether X or G DR_X ~~~~ | X decay radiation | **DAUGHTER** |nbspc| |nbspc| *(L)* access to the properties of the daughter nuclide, e.g. DR_*.DAUGHTER.ENERGY | **DAUGHTER_FED_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the level in which the daughter nuclide is created , e.g. DR_*.DAUGHTER_FED_LEVEL.ENERGY | **ENERGY** |nbspc| |nbspc| *(Q)* energy of the radiation [keV] | **INTENSITY_** |nbspc| |nbspc| *(Q)* absolute intensity of the radiation per 100 decays of the parent | **MODE** |nbspc| |nbspc| code of the decay, specify it using one of the DECAY_* constants | **PARENT** |nbspc| |nbspc| *(L)* access to the properties of the parent nuclide, e.g. DR_*.PARENT.Z | **PARENT_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the parent level, e.g. DR_*.PARENT_LEVEL.ENERGY | **SHELL** |nbspc| |nbspc| *(S)* Atomic shell IUPAC notation DR_AUGER ~~~~~~~~ | Auger electron radiation | **DAUGHTER** |nbspc| |nbspc| *(L)* access to the properties of the daughter nuclide, e.g. DR_*.DAUGHTER.ENERGY | **DAUGHTER_FED_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the level in which the daughter nuclide is created , e.g. DR_*.DAUGHTER_FED_LEVEL.ENERGY | **ENERGY** |nbspc| |nbspc| *(Q)* energy of the radiation [keV] | **INTENSITY_** |nbspc| |nbspc| *(Q)* absolute intensity of the radiation per 100 decays of the parent | **MODE** |nbspc| |nbspc| code of the decay, specify it using one of the DECAY_* constants | **PARENT** |nbspc| |nbspc| *(L)* access to the properties of the parent nuclide, e.g. DR_*.PARENT.Z | **PARENT_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the parent level, e.g. DR_*.PARENT_LEVEL.ENERGY | **SHELL** |nbspc| |nbspc| *(S)* Atomic shell IUPAC notation DR_ANNIHIL ~~~~~~~~~~~ | gamma from annihilation | **DAUGHTER** |nbspc| |nbspc| *(L)* access to the properties of the daughter nuclide, e.g. DR_*.DAUGHTER.ENERGY | **DAUGHTER_FED_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the level in which the daughter nuclide is created , e.g. DR_*.DAUGHTER_FED_LEVEL.ENERGY | **ENERGY** |nbspc| |nbspc| *(Q)* energy of the radiation [keV] | **INTENSITY_** |nbspc| |nbspc| *(Q)* absolute intensity of the radiation per 100 decays of the parent | **MODE** |nbspc| |nbspc| code of the decay, specify it using one of the DECAY_* constants | **PARENT** |nbspc| |nbspc| *(L)* access to the properties of the parent nuclide, e.g. DR_*.PARENT.Z | **PARENT_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the parent level, e.g. DR_*.PARENT_LEVEL.ENERGY DR_CONV_EL ~~~~~~~~~~~ | conversion electron radiation | **DAUGHTER** |nbspc| |nbspc| *(L)* access to the properties of the daughter nuclide, e.g. DR_*.DAUGHTER.ENERGY | **DAUGHTER_FED_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the level in which the daughter nuclide is created , e.g. DR_*.DAUGHTER_FED_LEVEL.ENERGY | **ENERGY** |nbspc| |nbspc| *(Q)* energy of the radiation [keV] | **INTENSITY_** |nbspc| |nbspc| *(Q)* absolute intensity of the radiation per 100 decays of the parent | **MODE** |nbspc| |nbspc| code of the decay, specify it using one of the DECAY_* constants | **PARENT** |nbspc| |nbspc| *(L)* access to the properties of the parent nuclide, e.g. DR_*.PARENT.Z | **PARENT_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the parent level, e.g. DR_*.PARENT_LEVEL.ENERGY | **SHELL** |nbspc| |nbspc| *(S)* Atomic shell IUPAC notation CUM_FY ~~~~~~~~~~~ | cumulative fission yields | **FAST_YIELD** |nbspc| |nbspc| *(q)* fast neutron yield | **MEV_14_YIELD** |nbspc| |nbspc| *(q)* 14 MeV neutron yield | **PARENT** |nbspc| |nbspc| *(L)* access to the properties of the fissioning nuclide, e.g. CUM_FY.PARENT.Z | **PARENT_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the parent level, e.g. CUM_FY.PARENT_LEVEL.ENERGY | **PRODUCT** |nbspc| |nbspc| *(L)* access to the properties of the product nuclide, e.g. CUM_FY.PRODUCT.Z | **THER_YIELD** |nbspc| |nbspc| *(q)* thermal neutron yield IND_FY ~~~~~~~~~~~ | independent fission yields | **FAST_YIELD** |nbspc| |nbspc| *(q)* fast neutron yield | **MEV_14_YIELD** |nbspc| |nbspc| *(q)* 14 MeV neutron yield | **PARENT** |nbspc| |nbspc| *(L)* access to the properties of the fissioning nuclide, e.g. IND_FY.PARENT.Z | **PARENT_LEVEL** |nbspc| |nbspc| *(L)* access to the properties of the parent level, e.g. IND_FY.PARENT_LEVEL.ENERGY | **PRODUCT** |nbspc| |nbspc| *(L)* access to the properties of the product nuclide, e.g. IND_FY.PRODUCT.Z | **THER_YIELD** |nbspc| |nbspc| *(q)* thermal neutron yield 3. Constants ------------- .. _decay-const-label: These constants can be used instead of typing cryptic coded values Decay modes ~~~~~~~~~~~ Use them when a decay mode needs to be referred , like in :code:`L_DECAYS.MODE = DECAY_A` | **DECAY_A** = 0 alpha | **DECAY_Bp** = 1 beta+ | **DECAY_Bm** = 2 beta- | **DECAY_IT** = 3 isomeric transition | **DECAY_P** = 4 proton | **DECAY_N** = 5 neutron | **DECAY_BmN** = 6 delayed neutronafter beta- | **DECAY_EC** = 7 electron capture | **DECAY_SF** = 8 spontaneous fission | **DECAY_D** = 9 deuterium | **DECAY_ECP** = 10 delayed proton after electron capture | **DECAY_3HE** = 11 3-He | **DECAY_BpP** = 12 delayed proton after beta+ | **DECAY_3H** = 13 3-H | **DECAY_G** = 14 G | **DECAY_Bp** = 15 beta+ | **DECAY_ECA** = 16 delayed alpha after electron capture | **DECAY_Bm2N** = 17 2 delayed neutrons after beta- | **DECAY_8BE** = 18 8-Be | **DECAY_BpA** = 19 delayed alpha after beta+ | **DECAY_2Bm** = 20 double beta- | **DECAY_2P** = 21 double proton | **DECAY_BmA** = 22 delayed alpha after beta- | **DECAY_14C** = 23 14-C | **DECAY_EC2P** = 24 2 delayed protons after electron capture | **DECAY_Bp2P** = 25 2 delayed protons after beta+ | **DECAY_2Bp** = 26 double beta+ | **DECAY_28MG** = 27 Mg-28 | **DECAY_ECSF** = 28 spontaneous fission after electron capture | **DECAY_Bm3N** = 29 3 delayed neutrons after beta- | **DECAY_2EC** = 30 double electron capture | **DECAY_24NE** = 31 Ne-24 | **DECAY_ECF** = 32 fission after electron capture | **DECAY_NE** = 33 Ne | **DECAY_ECP_EC2P** = 34 delayed proton or double delayed proton after electron capture | **DECAY_22NE** = 35 Ne-22 | **DECAY_34SI** = 36 Si-34 | **DECAY_EC_SF** = 37 EC plus spontaneous fission | **DECAY_24NE** = 38 24-Ne | **DECAY_BF** = 39 fission after beta | **DECAY_SF_EC_Bp** = 40 spontaneous fission - EC - beta+ | **DECAY_SF_Bm** = 41 spntaneous fission + beta- | **DECAY_Bm4N** = 42 4 delayed neutrons after beta- | **DECAY_SF_EC_Bm** = 44 spontaneous fission + electron capture + beta- | **DECAY_IT_EC_Bp** = 45 isomeric transition + electron capture + beta+ | **DECAY_EC3P** = 46 3 delayed protons after electron capture | **DECAY_20NE** = 47 20-Ne | **DECAY_BmF** = 49 beta- fission | **DECAY_BpEC** = 50 electron capture + beta+ | **DECAY_20O** = 51 20-O | **DECAY_MG** = 52 Mg | **DECAY_ECAP** = 53 delayed alpha plus delayed proton after electron capture | **DECAY_2e** = 54 2 e | **DECAY_BmP** = 55 delayed proton after beta- | **DECAY_12C** = 57 12-C | **DECAY_25NE** = 58 25-Ne | **DECAY_34SI** = 59 34-Si | **DECAY_22NE** = 60 22-Ne | **DECAY_2N** = 61 2 neutrons | **DECAY_EC_SF** = 62 electron capture + spontaneous fission | **DECAY_SF_EC_Bp** = 63 spontaneous fission + electron capture + beta+ | **DECAY_BmSF** = 64 spontaneous fission after beta- | **DECAY_Bm5N** = 65 5 delayed neutrons after beta- | **DECAY_BpF** = 66 fission after beta+ | **DECAY_28MG** = 67 28-Mg | **DECAY_Bm6N** = 68 6 delayed neutrons after beta- .. _ripl-const-label: JP assignment criteria ~~~~~~~~~~~~~~~~~~~~~~ To be used when referring to level spin values assigned by ENSDF , like in :code:`LEVEL.JP_REASON = JP_STRONG` | **JP_WEAK** = 1 | **JP_STRONG** = 0 RIPL J and P assignments method ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ To be used when referring to level spin values assigned by RIPL , like in :code:`LEVEL.JP_METHOD = RIPL_J_UNIQUE` | **RIPL_J_UNKNOWN** = -1 not assigned | **RIPL_J_UNIQUE** = 0 unique value already present in ENSDF | **RIPL_J_DISTRIBUTION_GAMMA** = 1 spin distribution from gamma transitions | **RIPL_J_DISTRIBUTION** = 2 spin distribution from levels with known Jp | **RIPL_J_DISTRIBUTION_CONSTRAIN** = 3 spin distribution constrained to a set of possible values given in ENSDF | **RIPL_P_PLUS** = 1 parity + | **RIPL_P_MINUS** = 0 parity - Beta decay transition types ~~~~~~~~~~~~~~~~~~~~~~~~~~~ like in :code:`DR_BETA.TRANS_TYPE = TRANS_1NU` | **TRANS_1NU** first non-unique | **TRANS_1U** first unique | **TRANS_2NU** | **TRANS_2U** | **TRANS_3NU** | **TRANS_3U** | **TRANS_4NU** | **TRANS_4U** | **TRANS_5NU** | **TRANS_5U** | **TRANS_7NU** | **TRANS_8U** | **TRANS_A** allowed | **TRANS_S** super-allowed Atomic shells and vacancies ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ To specify a .SHELL field, e.g. :code:`DR_AUGER.SHELL = SHELL_KLL` following IUPAC notation https://en.wikipedia.org/wiki/X-ray_notation | **SHELL_K** = 'K' | **SHELL_KA1** = 'KA1' | **SHELL_KA2** = 'KA2' | **SHELL_KB** = 'KB' | **SHELL_KLL** = 'KLL' | **SHELL_KLX** = 'KLX' | **SHELL_KXY** = 'KXY' | **SHELL_KpB1** = 'KpB1' | **SHELL_KpB2** = 'KpB2' | **SHELL_L** = 'L' | **SHELL_L1** = 'L1' | **SHELL_L1M2** = 'L1M2' | **SHELL_L1M3** = 'L1M3' | **SHELL_L1N2** = 'L1N2' | **SHELL_L1N3** = 'L1N3' | **SHELL_L1O23** = 'L1O23' | **SHELL_L2** = 'L2' | **SHELL_L2M1** = 'L2M1' | **SHELL_L2M4** = 'L2M4' | **SHELL_L2N1** = 'L2N1' | **SHELL_L2N4** = 'L2N4' | **SHELL_L2O1** = 'L2O1' | **SHELL_L2O4** = 'L2O4' | **SHELL_L3** = 'L3' | **SHELL_L3M1** = 'L3M1' | **SHELL_L3M4** = 'L3M4' | **SHELL_L3M5** = 'L3M5' | **SHELL_L3N1** = 'L3N1' | **SHELL_L3N45** = 'L3N45' | **SHELL_L3O1** = 'L3O1' | **SHELL_L3P1** = 'L3P1' | **SHELL_M** = 'M' | **SHELL_N** = 'N' | **SHELL_NPLUS** = 'N+' | **SHELL_O** = 'O'